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Abstract

The likelihood of systemic risk presents a challenge for modern finance. In particular, it is
important to know to what extent the market exacts a premium for exposure to ’tail risk’. In this
paper, we use a simple estimate of two types of tail risk, in returns and liquidity, and measure
their performance in a Fama and French (1993) style factor model. Empirically, return tail risk
induces a monotonic pattern: stocks that are more sensitive to tail risk receive higher returns.
Somewhat surprisingly, tail risk does not affect financial firms more than others. Tail risk ex-
hibits relatively large returns and has very low correlations with other risk factors, suggesting
that it represents a quite different type of risk. We document an economically and statistically
significant premium between 1% and 3% for tail risk, which is robust to size, book-to-market,
liquidity, downside risk, volatility and momentum. Furthermore, when we consider asset pric-
ing tests, the only model to survive is one that augments the standard Fama-French model with
a tail risk factor. Our results suggest that financial markets recognize tail risk in returns, which
is reflected in the cross section of stocks. By contrast, liquidity tail risk is unpriced, which is a
bit puzzling. When we estimate tail indices of liquidity and returns from high-frequency data,
we discover they are always significantly correlated. This latter finding is consistent with the
notion that episodes of tail risk in returns coincide with tail risk in liquidity.
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1 Introduction

The financial crisis of 2008 called into question the ability of markets to deal with extreme events. A

smoothly functioning financial system should award an appropriate premium to all relevant risks, such

as large drops in prices and liquidity. A growing body of theoretical and policy research has treated the

questions of systemic risk channels and optimal policy response.1 However, there are few studies that tackle

the issue of estimating the price required to compensate investors for exposure to systemic risk in asset

returns and liquidity.

Systemic risk affects both financial markets and the real economy.2 When extreme events occur in financial

markets, propagation mechanisms may amplify their impact throughout the nation.3 The demise of a major

firm or lending institution evidently affects its customers, but may also have macroeconomic implications

for aggregate consumption, investment, and unemployment.4 For example, the 2008 collapse of Lehman

Brothers damaged credit markets and scared employers and workers in all lines of business. Such magnified

and correlated outcomes are vitally important for individuals in the economy, as well as for policymakers

and investors. Moreover, from an academic viewpoint, extreme events are interesting, since they resemble

results from a broad class of theoretical research on herding and strategic complementarities.5 It is therefore

valuable from several perspectives to obtain estimates of the effect of systemic risk on assets’ required rates

of return.

In light of these considerations, the main goal of this paper is to construct empirical estimates of the price

of systemic risk. We therefore calculate measures of exposure to tail risk in US common stocks over the

last half-century, and estimate the relevant risk premia. Intuitively, we should expect assets which tend to

comove with systemic risk to be unattractive for risk averse investors to hold, after controlling for firm size,

1See Shin (2009); Acharya et al. (2010a); and Acharya et al. (2010c)
2 For evidence on the welfare costs of extreme events, see Chatterjee and Corbae (2007), and Barro (2009).
3See Barro (2006) and Barro (2009). Also, see Horst and Scheinkman (2006), and Krishnamurthy (2010) for

economic underpinnings of amplifications.
4 For details on the macroeconomic importance of large firms, see Gabaix (2010a). For insurance during periods

of economic disruptions, see Jaffee and Russell (1997); Jaffee (2006); and Ibragimov et al. (2009).
5 See Wilson (1975); Bikhchandani et al. (1992); Cooper (1999); and Vives (2008), chapter 6.
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liquidity and other factors. The reason is that they will be more expensive and difficult to sell when there is

a large negative market-wide shock. Thus, they should carry a ’tail risk premium’. In this paper, we explore

the conjecture that the cross-section of stock returns reflects a premium for bearing tail risk in liquidity and

returns. A secondary goal of the paper is to assess the role of tail risk using high frequency data, and to

investigate interactions between tail risk in returns and liquidity.

1.1 Related Literature

We build on previous research on asset pricing, systemic risk, and extreme economic events. Regarding

asset pricing, Roy (1952) argues that investors care more about losses than gains. Kraus and Litzenberger

(1976) develop a framework where individuals choose their investments based on a preference for positively

skewed returns. Kahneman and Tversky (1979) show in a behavioral framework that agents may have loss

averse preferences. Harvey and Siddique (2000) develop a model of conditional skewness in asset prices.

They estimate that the premium for systematic skewness is significant and 3.6% per annum. Ang et al.

(2006a) take the loss aversion concept to the data and examines whether stocks that covary with the market

during market declines have higher average returns. They estimate the downside risk premium for the US to

be approximately 6% per annum. In a related study, Ang et al. (2006b) conduct an empirical analysis of the

effect of volatility on asset returns. They find that stocks with high exposure to aggregate volatility experi-

ence low returns, and that the volatility risk premium is approximately −1% per annum. The authors also

document an important puzzle, namely, that high idiosyncratic risk stocks have exceptionally low returns.

Patton (2006) shows that cash-constrained investors are better off when they account for skewness in as-

set returns. Regarding systemic risk, Danielsson and Zigrand (2008) construct a general equilibrium model

where asset prices are determined in the presence of systemic risk. The authors argue that while regulation

can reduce the likelihood of systemic risk, it carries costs, such as increased risk premia and volatility, and

the possibility of non-market clearing. Acharya et al. (2010a) describe the causes of the financial crisis of

2008, arguing that a key catalyst was excessive leverage, which created systemic tail risk. Acharya et al.

(2010b) construct a measure of systemic risk tendency, SES, based on comovement of expected shortfall of
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individual institutions and the aggregate financial system. They demonstrate the ex ante predictive power

of SES for various companies during the period 2007-2009. Acharya et al. (2010c) develop an approach to

regulating systemic risk based on SES. They propose that financial firms be taxed proportionally to their ex-

pected loss in the event of a systemic crisis. Bali et al. (2010) document high contemporaneous returns then

low subsequent returns, for stocks that experience unexpected idiosyncratic volatility. The authors argue that

this pattern is consistent with models of investor disagreement. Polson and Scott (2011) develop and test a

model of cross-country contagion, based on common volatility shocks. On the theoretical side, researchers

have established results that relate heavy tails, diversification and systemic risk. These results show that

when portfolio distributions are heavy-tailed, not only do they represent limited diversification, they may

drive a wedge between individual risk and systemic risk.6 Thus, there are aggregate economic ramifica-

tions for heavy tailed assets, since individuals’ diversification decisions yield both individual benefits and

aggregate systemic costs. If systemic externality costs are severe, the economy may require intervention to

improve resource allocation. These economic policy considerations do not seem to play a big role in most

of the asset pricing work cited above. Moreover, none of the papers examines the empirical effect of tail risk

on the cross section of stock returns. These issues provide an important motivation for our paper.

There is a large literature on extreme events and rare disasters in economics. Regarding extreme events,

two early studies by Mandelbrot (1963) and Fama (1965) show that US stocks are not gaussian and have

univariate heavy tails. Fama (1965) also documents that stock crashes occur more frequently than booms.

Jansen and de Vries (1991) investigate the distribution of extreme stock prices using a univariate, nonpara-

metric approach. They analyze daily data from ten S&P500 stocks, and document that the magnitude of

1987’s crash was somewhat exceptional, occurring once in 6 to 15 years. Susmel (2001) investigates the

univariate tail distributions for international stock returns. He documents that Latin American markets have

significantly heavier left tails than other industrialized markets. Susmel combines extreme value theory with

the safety-first criterion of Roy (1952), and demonstrates improved asset allocation relative to the mean-

variance approach. Longin and Solnik (2001) use a parametric multivariate approach to derive a general

6For evidence on limited diversification, see Embrechts et al. (2002) and Ibragimov and Walden (2007). For
evidence on a wedge between individual risk and systemic risk, see Shin (2009); Ibragimov et al. (2009); and
Ibragimov et al. (2011).
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distribution of extreme correlation. The authors examine G5 equity index data to test for multivariate nor-

mality in both positive and negative tails. They document that tail correlations approach zero (consistent with

normality) in the positive tail but not the negative tail. Further, Longin and Solnik (2001) show that corre-

lations increase during market downturns. Hartmann et al. (2003) use an extreme value approach to analyze

the behavior of currencies during crisis periods. Their results show that Latin American currencies have less

extreme dependence than in east Asia, and that the developing markets often have a smaller likelihood of

joint extremes than do the industrialized nations. Hartmann et al. (2004) develop a nonparametric measure

of asset market dependence during extreme periods. The authors estimate the likelihood of simultaneous

crashes in G5 stock and bond returns. Hartmann et al. (2004) document that stock markets crash together in

one out of five to eight crashes, and that G5 markets are statistically dependent during crises. They conclude

that the likelihood of asset dependence during extremes is statistically significant. Poon et al. (2004) use

a multivariate extreme value approach to model the tails of stock index returns, in daily G5 stock indices.

Poon et al. (2004) divide the data into several subperiods and country pairs, and document that in only 13 of

84 cases is there evidence of asymptotic dependence. They argue, therefore, that the probability of systemic

risk may be over-estimated in financial literature. Longin (2005) develops hypothesis tests that differentiate

between candidates for the distribution of stock returns, including the gaussian and stable Paretian. He then

tests the distribution of daily returns from the S&P500, and documents that only the student-t distribution

and ARCH processes can plausibly characterize the data. Adrian and Brunnermeier (2010) build analyze

a systemic risk measure, CoVaR, which summarizes the dependence of Value at Risk for different institu-

tions, and represents the conditional likelihood of an institution’s experiencing a tail event, given that other

institutions are in distress. They estimate CoVaR for commercial banks, investment banks and hedge funds

in the US. They document statistically significant spillover risk across institutions. Regarding rare events,

Liu et al. (2003) analyze the role of rare events for asset allocation in a jump diffusion setting. They demon-

strate that consideration of rare events discourages individual investors from holding leveraged positions.

Related research by Liu et al. (2005) develops an equilibrium model of asset prices with rare events. The

authors find that the equity premium comprises three parts, depending on risk aversion to jumps, aversion

to diffusion movements, and aversion to uncertainty about rare events. The authors document that aversion
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to rare events can help ameliorate option mispricing. Barro (2006) builds a representative agent economy

that incorporates the risk of a rare disaster, modelled as a large drop in the economy’s wealth endowment.

When this model is calibrated to the global economy, it can explain the equity premium and low risk free

rate puzzles, and can help account for stock market volatility. Gabaix (2008), Gabaix (2010b), and Wachter

(2011) generalize the Barro (2006) framework to account for dynamic probability of extreme events. These

latter models are able to explain outstanding macroeconomic and finance puzzles as well as the behavior

of stock volatility. Kelly (2011) estimates an average daily tail index from the cross section of stocks. The

author shows that this measure predicts the aggregate market, and that stocks that are highly sensitive to

this index earn low returns. Bollerslev and Todorov (2011) use high frequency options data to construct an

index of implicit disaster fears among investors. This method is motivated by a jump-diffusion model that

separates out disasters from smaller jumps in asset prices. The authors find that their method helps to explain

patterns in the equity premium and stock market variance. These papers all underscore the importance of

accounting for large, joint downward movements in asset returns. None of the papers, however, subjects

the conjecture of an explicit price of systemic risk in liquidity and returns to empirical testing in a standard

finance framework with tradable risk factors. This serves as a further motivation for our paper.

1.2 Contributions of Our Paper

We have 4 main contributions relative to the existing literature. First, we estimate a time series of daily tail

risk in liquidity and returns in US stock markets. We then construct tradable risk factors TR and LTR, based

on exposure to tail risk in returns and liquidity, respectively. Second, we analyze the pricing behavior of the

two tail risks in the market. In particular, we explicitly compute risk premia and conduct asset pricing tests

using both TR and LTR in a standard Fama-French framework. Third, we examine the relative exposure

of financial companies to tail risk, as well as the relevance of leverage and book-to-market considerations.

Finally, we use high-frequency data to document significant commonality between the tails of returns and

liquidity.
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More broadly, our research may yield practical insight into the functioning of the national economy where

the 2008 crisis had its origins. Specifically, the results of our study help to address important academic and

policy questions such as: What are the magnitude and price of exposure to tail risk in the US economy? Is tail

risk in returns related to liquidity tail risk and other risk factors? Does tail risk affect Wall Street more than

Main Street? Since we provide answers to these questions, our paper can contribute to the ongoing debate

on financial regulation and market performance. Our paper is one of the first to analyze and explicitly price

tail risk for liquidity and stock returns in the cross section, and to assess their empirical effects in a standard

finance framework.

The remainder of the paper is organized as follows. In section 2 we outline the empirical content of our

approach. In section 3, we describe the data and empirical results on computing aggregate tail risk in-

dices. Section 4 presents the risk premia and asset pricing results for return tail risk. Section 5 discusses

applications to liquidity tail risk and high frequency data, and Section 6 concludes.

2 Measuring Tail Risk

The goal of this project is to construct a proxy for tail risk in asset returns and liquidity, and then assemble

portfolios of stocks based on exposure to tail risk. Based on these portfolios, we create tradable tail risk

factors, which we use to compute risk premia, assess predictability, and conduct asset pricing tests.

2.1 Tail Indices and Power Laws

There are a number of estimates of systemic risk, which are based on the extreme value approach of quantile

exceedances, or else power laws.7 In either case, estimation focuses on a tail index, which assesses the

likelihood of extreme events. Tail indices indicate whether asset returns have heavy tails, which have been

7For an extreme value approach, see Hartmann et al. (2003); Hartmann et al. (2004); and Acharya et al. (2010a).
For a power law approach, see Gabaix et al. (2003).
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theoretically linked to failure of diversification and systemic risk.8 Tail indices relate to an important regu-

larity in economics, that of power laws. Consider two variables X and C. Then following Gabaix (2009),

we express a power law as a relation of the form C = hXα, for some unimportant constant h. The quantity

α is called the power law exponent and controls extreme behavior of the particular distribution.9

Empirical estimation of heavy-tailedness is conducted using the concept of tail index, which is the same as

the power law exponent above.10 Assume that returns rt are serially independent with a common distribution

function F (x). Consider a sample of size T > 0 and denote the sample order statistics as

r(1) ≤ r(2) ≤ ... ≤ r(T ).

Then the asymptotic distribution of the smallest returns r(1), written as F1(x), can be shown to satisfy

F1(x) =
{
1− exp

[
−(1 + kx)

1
k

]}
, if k ̸= 0 (1)

= {1− exp [x]} , if k = 0.

The parameter k governs the tail behavior of the distribution. It is often more useful to examine the tail

index α, defined as α = −1/k. The distribution will have at most i moments, for i ≤ α. For example, if α

is estimated to be 1.5, the data will only have well-defined means, but not variances. Thus, the smaller the

tail index, the heavier the tails of the particular asset returns. We use the method of Hill (1975) to estimate

the tail index.11 The estimator, denoted αH , is constructed as

1

αH
=

1

q

q∑
i=1

{
ln |r(i)| − ln |r(q+1)|

}
(2)

8See Embrechts et al. (2005); Ibragimov and Walden (2007); Ibragimov et al. (2009); and Ibragimov et al. (2011).
9For example, income research has documented that the proportion of individuals with wealth X above a certain

threshold x satisfies the following relationship: Pr(X > x) ∼ C
xα , where α ≈ 1.

10The material on tail indices follows the exposition of Tsay (2002), and Gabaix and Ibragimov (2011).
11The Hill estimator is asymptotically normal, and consistent if q is chosen appropriately. For more details, see

Tsay (2002); Embrechts et al. (2005); and de Haan and Ferreira (2006).
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where q is a positive integer. Since we are interested in examining large negative returns, in our empirical

implementation we choose a level of q that corresponds to the lower 5% tail of returns.12

Intuition for the Tail Index. The tail index measure in (2) assesses the average distance between the most

extreme observations ri and a benchmark rq+1. Therefore, when this index is applied to the cross section

of returns and liquidity, it varies monotonically with the average frequency of extreme realizations in the

relevant dataset. For example, when applied to liquidity of various firms each day, equation (2) will be larger

on days when more firms experience extremely low liquidity. This monotonic property with the likelihood

of extremes is what makes the tail index an attractive empirical proxy for tail risk.

2.2 How Exposure to Tail Risk Affects Asset Prices

Intuitively, the risk of systemwide extreme events should affect risk averse investors’ equilibrium demand

for assets. We now discuss two alternative ways in which this intuition can be formalized, the standard

discount factor framework (Campbell (2003); Ferson (2003)), and the dynamic rare disaster framework

(Gabaix (2008); Wachter (2011).)

Implications from the Stochastic Discount Factor Framework. In an economy with no arbitrage, the first

order condition for a representative agent holding a risky asset is

Et[Ri,t+1,Mt+1] = 1, (3)

where Ri,t+1 is the simple return on asset i and Mt+1 is the agent’s intertemporal marginal rate of substitu-

tion. Mt+1 is called the pricing kernel, and prices risky asset payoffs.13

Expanding the expression in (3), we can write 1 = Et[Ri,t+1Mt+1] = Et[Ri,t+1]Et[Mt+1]+Covt[Ri,t+1Mt+1].

This implies

Et[Ri,t+1] =
1− Covt[Ri,t+1,Mt+1]

Et[Mt+1]
.

12The cutoff of 5% is similar to that used by Gabaix et al. (2006); and Kelly (2011). Results with a 10% threshold
are available upon request.

13See Lucas (1978); Harrison and Kreps (1979); Campbell (2003); and Ferson (2003).
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Thus, an asset with high expected returns must have a relatively small covariance with the marginal rate of

substitution. This type of asset will be very risky, because it does not deliver wealth during states of nature

when the investor really needs wealth. The asset does not pay off during periods of high marginal utility,

and will therefore need to have high returns, otherwise investors would not hold it.

Systemic risk presents a textbook case of a state of nature where investors have high marginal utility. For

example, in the financial crisis of 2007-2009, many investors and home owners experienced dramatic de-

clines in profits and income.14 Consequently, risk-averse investors should demand higher returns for stocks

that are highly correlated with a systemic risk factor. We apply this insight in the following section, by

constructing tail risk factors corresponding to the pricing kernel M above15 and computing the returns on

stocks with different exposure to tail risk. Based on the reasoning above, we expect that stocks which are

highly correlated with a systemic risk factor should have relatively large returns, and that there should be a

positive premium for exposure to systemic risk.

Implications from the Dynamic Rare Disaster Framework. The recent work of Gabaix (2008), Gabaix

(2010b) and Wachter (2011) underscores theoretical reasons for including dynamic tail risk in asset pricing

models. A key insight from this body of research is that during extreme periods, fundamental asset values

fall by an amount which varies over time. Such dynamic asset shortfalls result in time-varying risk premia

and volatility. This framework provides a further theoretical basis to expect that assets with high exposure

to tail risk should have larger required returns.

3 Data and Empirical Results on Tail Risk

Data are downloaded from CRSP. These data comprise common stocks listed on NYSE, AMEX and NAS-

DAQ, which correspond to share codes equal to 10 or 11, and exchange code equal to 1, 2, or 3. The

variables retrieved include returns, shares outstanding, price and trading volume in daily frequency. These

14For a summary of the causes and effects of the crisis, see Acharya and Richardson (2009);
Brunnermeier and Pedersen (2009); and Acharya et al. (2010a).

15See the Appendix for details on the pricing kernel in an empirical framework.
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daily variables are used to calculate the Hill estimators on the cross-section of stock returns, and to com-

pute the average price impact as a liquidity measure for each day. For these calculations we apply a filter

from $5-$1,000. All stocks with price exceeding $1,000 or less than $5 in the closing of the previous day

are removed from the sample for only that day. The sample period is from July 1963 to December 2010.

The starting date of 1963 is dictated by the availability of daily data for the Fama-French factors, which is

July 1, 1963. After downloading this market data, we follow 3 steps: First, we construct Hill estimators of

tail risks for asset returns and liquidity, denoted RTI and LTI for return tail index and liquidity tail index,

respectively. This provides a daily series of tail risks in the market. Then we rank stocks into portfolios

based on sensitivity to RTI and LTI, to construct monthly returns. Finally these portfolios are formed into a

factor (5-1 differentials) as in the Fama and French (1993) framework. The factors are then used to estimate

the price of tail risk in asset returns. We use the terms ”Tail Risk” (TR) and ”Liquidity Tail Risk” (LTR) to

describe our risk factors.

3.1 Construction of Tail Index and Liquidity

We construct the raw tail risk index using the Hill estimator applied to the left tail of stock returns. Each

day we estimate the left tail index αH from equation (2) on the full sample of stock returns available at that

day, using a benchmark of the lowest 5% of returns. The average monthly index is illustrated in Figure 1,

and spikes around October 1987, August 1998 and October 2008. These periods correspond to important

extreme events: the 1987 stock market crash, the LTCM crisis, and the collapse of Lehman Brothers, respec-

tively. Therefore the tail index appears to reflect important periods of market turmoil. For robustness we also

consider estimates from a 10% threshold, which are presented for daily data in Figure 2. Visually the two

series are quite similar, and have a significant correlation of 0.90 (with a p-value less than 0.0001), which

is reassuring for our methodology. We also examine the relationship between the tail index and volatility

in daily and monthly data, in Figures 3 and 4. Volatility is measured by VXO, which assesses the implied

volatility of a 30-day at the money option. VXO is available from the Chicago Board Options Exchange

(CBOE). Visually the two series share some common spikes, especially in 1987, 1998 and 2008, although
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they appear less related at other periods. The volatility-tail index correlations for daily and monthly data

are relatively small, at 0.13 and 0.16 (with p-values of 0.0001 and 0.0054), respectively. Therefore, the tail

index may plausibly capture variation that is unrelated to volatility.

Since we control for liquidity risk, we need to construct a liquidity factor. Our liquidity measure of choice

is that of Amihud (2002):

Liqid =
|rid|
V olid

(4)

where V ol and r denote volume and returns, and Liqid refers to the illiquidity of stock i on day d. We use this

measure as the basis of our liquidity (tail and level) factors, based on evidence compiled by Goyenko et al.

(2009). These authors compare different liquidity measures with high frequency measures as benchmarks,

and document that the Amihud measure has the highest correlation with the benchmarks. We average (4)

across all stocks each d in order to obtain a daily market illiquidity measure Liqt, for use in the sensitivity

regression below.

3.2 Tail Risk Factor TR

It is necessary to construct a risk factor, in order to perform asset pricing tests and compute risk premiums.

We therefore follow a similar methodology to that developed by Fama and French (1993), and estimate

annual risk loadings βR and βliq for each stock. These loadings are estimated while controlling for the

Fama-French factors, and therefore are ’purged’ of the effect of standard risk factors. Specifically, we

sort stocks at the end of each June according to their betas for tail risk and illiquidity, estimated from the

following time series regression

reit = β0 + βMMKTt + βSSMBt + βHHMLt + βliqLiqt + βRRTIt + εit (5)

where rei and MKT represent excess returns on individual stocks and the market portfolio, SMB and

HML are the Fama-French factors, and RTI is the tail index of cross-sectional daily returns, respectively.

The regressions use daily data from July 1st of year t − 1 to June 30th of year t. To reduce small sample
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bias in regression coefficients, we exclude all firm-year samples with less than 120 observations in any given

year. Once we obtain the risk exposures βliq and βR, we use them to sort stocks into 5 quintile portfolios

with an equal number of firms each June of year t, and hold a value-weighted portfolio, evaluated each

month from July of year t to June of year t + 1. Finally, we construct the liquidity and return tail risk

factors as the difference between the portfolios with greatest and least sensitivity to liquidity, and to the

return tail index, respectively. We denote these factors TR and LIQ, to capture tail risk in returns, and

liquidity, respectively. For simplicity, we refer to return tail risk as just ’tail risk’. This procedure succeeds

in extracting factors that measure stocks’ exposure to tail risk, after controlling for standard risk factors.

Table 1 displays average factor returns for both tail risk portfolios. Interestingly, Panel A shows a decreasing

monotonic pattern of returns across return tail risk portfolios. Economically speaking, the monotone pattern

for tail risk means that stocks that are more sensitive to tail risk receive higher returns, which is suggestive of

pricing importance. Moreover, tail risk has a statistically significant differential between the highest (RTI1)

and lowest (RTI5) portfolios. In accordance with the asset pricing work of Fama and French (1993) and

others, we term this differential the ’return tail risk factor’, denoted TR. This factor has an economically

significant value of nearly 5%. In economic terms, even after liquidity, market, size and book-to-market

considerations, US investors that held stocks with high tail risk exposure required nearly 5% higher monthly

returns than their counterparts who held stocks with low tail risk exposure. We will examine liquidity (level

and tail) risk in more detail in Section 5. For the remainder of this section, we focus on return tail risk, TR.

How does the tail risk factor compare to other standard risk factors? To answer this question, we analyze

average returns and correlations, in Table 2. The most striking result is that the tail risk factor’s returns 0f

4.87 are higher than the Fama-French factors, and almost as large as the market return, 5.15. The largest

correlation to tail risk is less than 0.14, so tail risk does not appear to be closely related to other factors.
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3.3 Tail Risk in the Real and Financial Sectors

Does tail risk relate to the real economy? And does it tend to affect Wall Street or Main Street? We consider

these questions below. Regarding tail risk and the real economy, we saw from Figure 1 that the tail index

does not have a strong relation to the business cycle. A similar pattern is true for the TR factor: Figure

5 shows that TR is not strongly related to NBER recessions. This finding is economically intuitive if tail

events happen randomly and are not systematically linked to productive activity of the real economy.

Regarding tail risk and Wall Street, we analyze the proportion of financial firms in TI portfolios every year,

in Figure 6. This allows us to examine whether tail risk tends to be concentrated in financial firms. Evidently

the percentage of financial firms does not differ systematically between low- (TI1) and high-exposure (TI5)

portfolios. Moreover, there is no clear pattern regarding leverage or book-to-market ratios, as shown in

Panels B and C. A general summary of these characteristics over the entire sample is presented in Table 3.

Again, the most exposed firms do not tend to be financial firms, nor do they have higher leverage or book-

to-market. Instead, there is a hump-shaped pattern, where the highest numbers of financial firms, leverage

and book-to-market are for the middle portfolios TI3 and LIQ3.

To glean further insight on the role of Wall Street, we compute tail indices separately for all financial firms.

The results are in Figure 7. The upper panel shows a marked difference between the two, especially in

the early sample. Furthermore, the two series have only a modest correlation of 0.4. Thus there appears

a significant difference between tail index of financials and other firms. As a final diagnostic, we present

summary statistics in Table 4. The return tail index for financial firms has a modest correlation of -0.2 with

Dow Jones returns, while the tail index for all firms is three times larger in absolute value. To summarize

the results of this subsection, the average level of tail risk in financial firms and its relation to stock market

returns appear to differ from that of the entire universe of stocks. However, the proportion of financial firms

in the high tail risk quintiles is not systematically large year by year or over the entire sample.
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3.4 Predictive Ability of Tail Risk

In order to investigate another potential linkage between tail risk and the economy, we conduct tests of

causality and predictability. We consider two variables that are important from policy and academic per-

spectives, namely the yield spread and the market return.16 Since the tests require stability in the data, we

check for unit roots and stationarity, as presented in Table 5.17 We are interested in monthly returns, so we

focus on the monthly horizon. Yield spreads appear to have a unit root and be nonstationary, so inference

involving yield spreads will be problematic. Therefore our following results on yield spread predictability

are mainly for illustrative purposes.18 Market returns, TR and the month-end tail index appear to be station-

ary and without a unit root, while the average monthly tail index appears to have a unit root. We therefore

use the month-end tail index in the following causality and predictability tests.

We test causality with a 2-variable vector autoregression (VAR) framework, and present the results in Table

6. We focus on Panel B, since it is based on the more parsimonious BIC. The TR factor possesses highly

significant information for future yield spreads but not for the market return, while the tail index has some

information for future market returns. In the other direction, the market has information about future TR

and tail index. As mentioned above, the nonstationarity of the yield spread requires us to be cautious about

results on that variable. We now turn to formal predictability tests. Our framework is similar to that of

Ang and Bekaert (2007), with results presented in Table 7. In Panel A, we present the results using TR as a

predictor. The large standard errors around βTR when predicting the market return indicate that TR has little

predictive power for the market. However, TR has substantial predictive power for the yield spread at all

horizons. A similar pattern exists for the tail index in Panel B. In general, our results indicate that tail index

and tail risk cannot predict the market, although they can predict yield spreads. Somewhat surprisingly, the

market return appears to have some information about future tail risk.

16Yield spread is the difference in returns between AAA and BAA bonds, and is a measure of default risk. These
data are available from the Federal Reserve Bank of St. Louis.

17For more details on the unit root and stationarity tests, see Phillips and Perron (1988) and Kwiatkowski et al.
(1992), respectively. Our application of the tests is close to that of Ang and Bekaert (2007), although we use longer
horizon returns.

18We could difference yield spreads to remove the unit root, but this would prevent us from analyzing more than
one-period ahead prediction.
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4 The Pricing of Tail Risk

We now estimate the price of tail risk, and assess its performance in a standard finance setting. Our frame-

work is a GMM-based linear factor model, as described in Cochrane (2005) and in the Appendix. Table 8

presents risk premia in the linear factor model framework. As explained in the Appendix, the risk premium

measures the amount of return that an investor demands for a unit of exposure to the particular risk factor.

Therefore the premium for tail risk measures the compensation to investors for holding stocks that have tail

risk. We estimate risk premia using the CAPM and Fama-French (FF3) models, as well as these models

augmented with liquidity LIQ and our tail risk factor TR. The test assets are the 5x5 size and book to

market portfolios available from the website of Kenneth French.19 The most important result is that tail risk

is always significant. For example, even when it is added to the Fama-French 3 factor model, it receives a

premium of more than 2%. This premium is more than double the magnitude of all other estimated premia,

underscoring the importance of tail risk in the linear factor setting.

Formal asset pricing tests are presented in Table 9. J-stat is the Hansen (1982) test of over-identifying

restrictions. HJ Dist is the distance metric of Hansen and Jagannathan (1997), which measures the maximum

annualized pricing error for each model. Large p-values for the J-statistic and HJ distance indicate that the

particular model fits well. The Delta-J test of Newey and West (1987) examines whether SMB and HML

have additional ability to explain asset prices, relative to each alternative model. Small p-values for the

Delta-J test indicate that addition of SMB and HML improves model fit. An explanation of these tests is

in the Appendix. We use p-values of 0.05 as our cutoff levels for significance. In our table, the J-test and

HJ-distance have their largest p-values for the Fama-French 3-factor model augmented by tail risk. Thus,

the most plausible model is one that incorporates both Fama-French factors and tail risk. Turning to the

Delta-J test, the relatively small p-values indicate that SMB and HML improve the fit of all models.

19We are grateful to Kenneth French for making these portfolios available.
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4.1 Robustness

While the above results are highly suggestive, it is important to check for alternative explanations. Five

plausible objections to our results have to with considerations of value-weighting liquidity, momentum,

downside risk, volatility, and choice of data filter. Regarding value-weighting liquidity, our liquidity factor

LIQ could possibly fail to capture liquidity effects by treating all firms equally. Consequently, large firms’

true impact on market liquidity would be misrepresented. Moreover, in the last decade a large body of

research has documented the importance of different liquidity measures in pricing the cross section of asset

returns, for example Pastor and Stambaugh (2003); Acharya and Pedersen (2005); and Korajczyk and Sadka

(2007); among others. We therefore construct a value-weighted version of the liquidity factor derived from

(4). The results are presented in Table 10. Evidently, tail risk still receives significant premia in every

specification. Indeed, the premia in the most comprehensive model (FF3 & VWLIQ & TR) slightly exceeds

that from the corresponding model in Table 8. The asset pricing tests are very similar to those in Table 9:

again the dominant model incorporates both Fama-French factors and tail risk.

Momentum is another candidate explanation, since stocks that are more sensitive to tail risk could be related

to past winners. We therefore augment the above tests to include momentum considerations. Specifically,

we use the momentum factor UMD of Carhart (1997) in the asset pricing tests. We also utilize the traded

liquidity factor PSLIQ of Pastor and Stambaugh (2003).20 The results are presented in Table 11. The

premium for TR is again significant in both specifications, and the best models include TR and Liquidity,

according to both the J-test and the HJ distance. According to the Delta-J test’s large p-values, SMB and

HML do not add significant information to a model that includes CAPM, liquidity, momentum and tail risk.

Two important alternative explanations for our results are that tail risk could just be capturing downside

comovement of stocks or systematic market volatility. We therefore examine robustness to downside risk

and volatility. Table 12 estimates risk premia and asset pricing tests, where in addition to the regular market

excess return, we include a downside market factor ’Down’. As in equation (13) of Ang et al. (2006a), this

factor is equal to the minimum of the market return and the historical average. The risk premium for TR

20We are grateful to Lubos Pastor for making these data available on his website.
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is still significant and the results are similar to those of our original tests. We now turn to a discussion of

volatility. We construct the volatility factor FVIX of Ang et al. (2006b), and first present summary statistics

in Table 13.21 FVIX has relatively low returns at 0.54. These two factors are not closely related, as TR

and FVIX have a relatively small correlation of around 4%. We present estimates of risk premia and asset

pricing tests that include FVIX and TR in Table 14. The TR premium is again significant and larger than

2%, and the asset pricing tests suggest the best models should include TR.

Finally, our original estimation in (4) and (2) is based on the restriction that stocks be traded more than 120

days each years. This filter could arguably include very large or very small stocks, that are not necessarily

representative of the market as a whole. We therefore apply an alternative filter, based on stock price. We

restrict our data estimation to stocks that fall in the range $5-$1,000 from the previous year. Once a stock’s

closing price is outside this range, it is excluded from the cross-section sample until its price moves back

to this range. Results are presented in Table 15. The estimated premia for tail risk are all significant. The

only model to survive the J-test and HJ distance is one that augments the Fama French model with a tail risk

factor. This result is therefore qualitatively the same as the original results in Table 9, without the filter.

To summarize, a measure of systemic risk of returns is priced in the US stock market. Moreover, our asset

pricing tests show that the only model which cannot be rejected is typically one that contains the Fama-

French factors as well as our tail risk factor. A CAPM model augmented with tail risk does not suffice

to price the cross section of asset returns: SMB and HML, as well as momentum and volatility, generally

contribute meaningfully to a model with CAPM and tail risk. Thus, although return tail risk is important, it

appears to play a complementary role to existing factors.

21FVIX is constructed by projecting changes in the VIX index onto a set of base assets, as in Ang et al. (2006b),
equation (4). Since 2003, CBOE changed the ”VIX” index used by Ang et al. (2006b) to VXO. VXO is highly
correlated with the current VIX index. We therefore use VXO in calculating FVIX. Another reason for using VXO
is that it is available back to January 1986 instead of January 1990 of the VIX index. This larger sample allows us to
include the important extreme event of October 1987 in our sample.
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5 A Liquidity Perspective on Tail Risk

Our preceding analysis focuses on tail risk in returns and its interaction with finance factors, in particular

liquidity. This analysis can be profitably extended in at least two areas. First, tail behavior of liquidity is

important, since dryups in liquidity are associated with business cycles, portfolio underdiversification, and

financial crises (Brunnermeier and Pedersen (2009); Wagner (2011); and Odegaard et al. (2011)). Second,

it is valuable to consider tail index estimation based on intraday data for individual stocks. Although the

intraday approach does not have a long enough sample for standard asset pricing studies, it permits us to

obtain a tail index for each stock, every day. These daily indices can be aggregated to form daily market

indices, which are attractive because they are based on many observations each day. Such a market index

is helpful to check how reasonable our cross-section based indices are, and to sharpen our intuition about

tail risk through simple graphs and exploratory data analysis. We discuss these two perspectives on tail risk

below, in turn.

5.1 Liquidity Tail Risk

We construct an estimate of the tail index in liquidity based on cross-section data, as we did earlier for

returns. The liquidity measure is that of Amihud (2002), from equation (4). For purposes of comparison, we

present the liquidity tail index along with the previous return tail index in Figure 8. The most striking finding

is that the liquidity tail is generally below the return tail, which indicates a lower likelihood of extremes for

liquidity, using the intuition from (2). The two tail indices have modest Pearson and rank correlations, at

0.26 and 0.23, respectively. Both correlations are strongly statistically significant, with p-values smaller

than 0.0001. Intuitively, tail behavior of returns and liquidity is related, since the two tails co-move in a

manner that is economically important.

Liquidity Tail Risk Factor As in Section 3 above, we construct a risk factor, in order to perform asset

pricing tests and compute risk premiums. As before, we estimate annual risk loadings, βL and βliq, for

each stock. These loadings are estimated while controlling for the Fama-French factors, and therefore are
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’purged’ of the effect of standard risk factors. Specifically, we sort stocks at the end of each June according

to their betas for liquidity tail risk and illiquidity level, estimated from the following time series regression

reit = β0 + βMMKTt + βSSMBt + βHHMLt + βLLTIt + βliqLiqt + εit (6)

where rei and MKT represent excess returns on individual stocks and the market portfolio, SMB and

HML are the Fama-French factors, and Illiqt is the illiquidity measure of Amihud (2002), and LTI is the

tail index of cross-sectional daily liquidity. The regressions use daily data from July 1st of year t−1 to June

30th of year t.

Table 16 shows average returns on portfolios sorted on sensitivity to liquidity tail risk. Surprisingly, we find

that there is very little dispersion across the portfolios. From Panel A, the difference in returns between

stocks that are highly sensitive to liquidity tail risk and those that are not, is only 0.72 per cent per annum,

and insignificantly different from zero. Liquidity level portfolios do not perform much better. Although

this lack of return differential for extreme observations in liquidity may be due to our choice of liquidity

measures, we still find it somewhat puzzling.

In order to conduct asset pricing exercises, we compute a liquidity tail risk factor ”LTR” based on the 5-1

differentials, and present its summary statistics in Table 17. Panel A shows that, quite the opposite of return

tail risk TR in Table (8) above, LTR has the lowest returns of all the factors. Panel B’s correlations of LTR

with other factors are low, beneath 15%. We turn to asset pricing tests in Table 18. From Panel A, we see

that LTR never receives a significant premium. In Panel B, the results are again the opposite of their table

9 counterparts, where the largest models always had big p-values. This previous result does not obtain for

liquidity tail risk: the J-statistic and HJ distance have minute p-values in all models. Further, the delta-J also

has minute p-values, indicating that a model based on LTR and standard factors is inadequate. These results

stand in broad contrast to those for return tail risk, and deepen the puzzle of nonpricing of liquidity tail risk.
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5.2 Intraday-Based Tail Index

High-frequency data provides a useful setting for analyzing tail behavior in returns and liquidity. We con-

struct intraday-based tail indices in both liquidity and returns in the following three steps. First, we calculate

minute-by-minute returns and liquidity for each day from January 1993 to December 2010, using firms in

the Trades and Quotes (TAQ) database.22 These firms are filtered to include only those with a price between

$5 and $1000 in the previous day. Given the variety of liquidity proxies in existence, we compute 4 liquidity

measures: net order flow, effective spread, absolute spread and relative spread. Second, for each of these

five series, we compute the Hill (1975) estimator from equation (2).23 Third and finally, we average the firm

tail indices to obtain an aggregate market tail index, for each day.

The high frequency-based tail indices are presented in Figures 9 to 13. There is evidence of nonstationarity

in the tails for both returns and the spread measures, as shown in Figures 9 and 10: tail indices were very

large before 1998, and then settled down to more moderate values subsequently. By contrast, Figure 13

shows that the final liquidity measure, net order flow, exhibited less dramatic shifts in the tails over the

sample. Moreover, Figure 13 superimposes the cross-section based liquidity tail risk measure from Section

5.1 above. The cross-section based measure is almost always below the intrday measure, especially in recent

years. Therefore, the cross section tail index may understate the true true magnitude of liquidity tail risk.

This understatement might be an explanation for our finding of no pricing effects for liquidity.

How do the high-frequency based tails relate to each other? A basic answer to this question is provided in

Table 19. Panel A presents standard Pearson correlations. Interestingly, the return tail is significantly cor-

related with all liquidity tails. However, Pearson correlations are notoriously fragile,24, so Panel B presents

the more robust Spearman or rank correlations. The most striking finding is that all tails are significantly

correlated. For example, the rank correlation of return tails with all spread tails is always above 0.8! This

22For details on tail index estimation with high frequency data, see Dacorogna et al. (2001), chapter 5.
23Our estimates are based on the extreme 5% observations for each firm. We also compute a moment-based estima-

tor of the tail index, as in de Haan and Ferreira (2006), chapter 3. These latter estimates are available from the authors
upon request.

24For theoretical and empirical evidence on correlations versus robust dependence measures, see Embrechts et al.
(2002); and Chollete et al. (2011), respectively.
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provides quantitative evidence that historically more than 80% of the time, environments with extreme stock

returns, also feature extremes in liquidity. In economic terms, this strong dependence between liquidity and

return tails is consistent with the notion that episodes of tail risk in returns coincide with periods of tail risk

in liquidity.

6 Conclusions

The recent financial crisis has underscored the importance of understanding and pricing systemic risk. Our

research aims to deliver practical insight into the functioning of the national economy where the 2008 crisis

had its origins. In particular, our study addresses the questions: What is the magnitude and price of exposure

to tail risk in the US economy? Is return tail risk related to liquidity tail risk and other risk factors? Are

financial firms more exposed to tail risk? We estimate a return tail risk premium of around 1 to 3%, tail risk

is typically uncorrelated with other risk factors, and financial firms do not obviously suffer more tail risk.

Since we provide answers to these questions, our paper may contribute to the ongoing debate on financial

regulation and market performance. In our empirical approach we construct the average tail index for stock

returns and liquidity as estimates of tail risk. We document that stocks have systematically higher returns if

they are more exposed to return tail risk. We construct a tail risk factor TR, based on stock sensitivity to the

tail risk series, net of market, liquidity, size and HML effects. TR exhibits larger average returns than other

risk factors. It also has very low correlations with the other factors, suggesting that it may represent a quite

different type of risk.

We document an economically and statistically significant premium for tail risk in returns (TR), but not for

liquidity tail risk (LTR). The premium for TR is significant when tail risk is evaluated both in a CAPM and

Fama-French 3-factor model. Furthermore, when we consider asset pricing tests, the overwhelmingly best

model is one that augments the Fama-French model with a return tail risk factor. Our results are robust

to alternative measures of liquidity, momentum, downside risk, volatility, and a price filter. By contrast,

exposure to liquidity tail risk does not afford an extra risk premium, and the liquidity tail risk factor is
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unhelpful in a Fama-French pricing framework. Although this non-pricing of liquidity tail risk could be due

to our measure for liquidity, it is somewhat puzzling.

An interesting finding of our research is comovement of tail indices in liquidity and returns. Based on

daily data, the tail indices of liquidity and returns are modestly, significantly correlated, at 0.26. More

telling, when tail indices for returns and liquidity are estimated from high frequency data, we confirm very

strong, significant commonality between return tails and all liquidity tails. In particular, the rank correlation

between return tails and spread tails always exceeds 80%. This latter finding suggests that episodes of tail

risk in returns and liquidity coincide.

Surprisingly, exposure to tail risk does not seem to be concentrated in financial firms: the proportion of

financial firms is roughly similar across the different portfolios. Thus, both Wall Street and Main Street had

exposure to tail risk over the last half-century of US stock market history. Since return tail risk is empirically

recognized by the market, academics and policymakers cannot assume that markets ignore the likelihood of

extreme events. Our findings underscore the empirical relevance of tail risk for financial markets, and may

justify further theoretical and empirical research on tail risk in the economy.
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A Asset Pricing Tests

The asset pricing methodology we employ follows the stochastic discount factor (SDF) approach, similar
to that of Cochrane (2005), and utilized by modern asset pricing studies. We specialize our analysis to a
linear setting, in the tradition of Fama and French (1993).25 We employ three different tests: the J-test, the
HJ distance, the delta-J test and the supLM test. The basic setup may be expressed in the following manner.
Consider an n× 1 vector of gross returns R and a vector of asset prices p. Under conditions of no arbitrage
there can be shown to exist a stochastic discount factor m, such that the following pricing relation holds:

E(Rm) = p (7)

If we introduce a k-vector of risk factors f , and specialize to linear factor models, the relevant SDF is of the
form

m = b0 + f ′b1 (8)

where b0 is a constant, and b1 is a k-vector of coefficients.26 It can be demonstrated (Cochrane (1996);
Ferson (2003)) that there is an equivalence between the linear discount factor of equation (8) and a factor
pricing model expressed using factor risk premiums and betas. The equivalence can be expressed in the
following manner, E(R) = R0p+ β′λ. In this notation, the unconditional riskless rate is R0 = 1

b0+E(f ′)b1
,

the vector of projections of asset returns on factors is denoted β = cov(r, f ′)var(f)−1, and the risk premia
may be calculated as

λ = −R0cov(f, f ′)b1 (9)

Now that we have displayed the basic framework we shall discuss the three tests in turn. First is the J test.
We estimate the parameters b = {b0 b1} by optimal GMM of Hansen (1982). From the data b is chosen
to minimize the following objective function: b = argmin Jt = gT (b)

′WgT (b). Here g is defined as
gT (b) =

1
T

∑T
t=1Rtyt−p, the vector of sample pricing errors, y is the candidate SDF, and W is the optimal

weighting matrix. Hansen (1982) derives the distribution of the associated J-test statistic as

T ∗ JT ∼ χ2(n− k) (10)

where n is the number of orthogonality conditions and k is the number of parameters estimated.

One shortcoming of the J test is that it is model-specific; one might improve Jt = gT (b)
′S−1gT (b) by

inflating estimates of S rather than by lowering pricing errors gT . Therefore we also consider a second
test,the HJ distance of Hansen and Jagannathan (1997) To understand the HJ distance one can proceed in

25For further exposition of the SDF and linear factor model approaches, see Campbell (2003) and Ferson (2003),
respectively. For asset pricing studies that apply these frameworks, see Ang et al. (2006b); and Vassalou and Xing
(2004).

26The setup here closely follows that of Cochrane (2005), which derives the results in more detail.

28



the following fashion. Consider a proxy SDF y and the set of correct SDFs, M . The HJ distance δ is the
minimum distance to the nearest correct SDF, and may be defined as

δ = min
m∈L2

∥ y −m ∥ (11)

subject to E(mR) = p or, equivalently,

δ2 = min
m∈L2

sup
λ∈Rn

E(y −m)2 + 2λ′[E(mR)− p]. (12)

Hansen and Jagannathan (1997) show that the solution to this program can be expressed as δ = [E(yR −
p)′E(RR′)−1E(yR − p)]1/2, and that the estimation of the model’s parameters can be cast in a GMM
framework such that HJ distance is minimized. Empirically, this amounts to choosing b as

b = argmin δ2 = argmin gT (b)
′WT gT (b) (13)

where WT = 1
T

∑T
t=1(RtR

′
t)
−1. This is the approach we use for constructing the HJ distance metric.

Hansen and Jagannathan (1997) also note that the HJ distance can be interpreted as the maximum pricing
error for the test portfolios, with (portfolio) return having a norm of unity.

The third test is the delta-J test. The delta-J test examines whether other risk factors (in this case, HML and
SMB) have any additional explanatory power in the presence of the proposed models. Suppose we have
two sets of factors, f1 and f2, and wish to determine whether the set f2 is irrelevant in the presence of f1.
One method, akin to the classical Likelihood Ratio test, is to estimate both the unrestricted and restricted
models, respectively, m = b′1f1+ b′2f2 and m = b′1f1, then compare the J test statistic defined in (10) above.
The J statistic should be larger for the restricted case since there are fewer parameters to estimate. To assess
whether the increase in the J statistic is significant, we utilize the delta-J statistic, which is distributed as

∆J = TJrestricted − TJunrestricted ∼ χ2(q) (14)

where q is the number of restrictions. For example, in the context of our framework, f1 can correspond to
CAPM augmented with liquidity and the tail risk factor, and f2 corresponds to HML and SMB.
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Figure 1: Average Monthly Tail Risk in Asset Returns

The figure shows the tail index estimator of Hill (1975), applied to stock returns. The tail index is estimated
from equation (2) in the cross-section of stocks every day to obtain a market tail risk index. The threshold
level is the lowest 5% of the data. In this figure the market tail index is the averaged over all days in each
month to obtain a measure of monthly market tail risk. The data comprise NYSE, AMEX and NASDAQ
stocks with prices between $5 and $1000. Shaded areas denote NBER recessions. The sample period is
1964 to 2010.
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Figure 2: Daily Return Tail Index using Alternative Thresholds

The figure shows the return tail index estimated using the method of Hill (1975), from equation (2). We use
both 10% and 5% thresholds, that is, we estimate the index using the lowest 10 and 5 percent of returns in
the cross section of stocks each day, respectively. The data comprise NYSE, AMEX and NASDAQ stocks
with prices between $5 and $1000. The sample period is 1964 to 2010.
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Figure 3: Tail Risk and Volatility: Daily Data

The figure shows the tail index estimator of Hill (1975), applied to stock returns. The tail index is estimated
from equation (2) in the cross-section of stocks every day to obtain a daily tail risk index for the market. The
data comprise NYSE, AMEX and NASDAQ stocks with prices between $5 and $1000. Also shown is the
volatility measure VXO, which measures the implied volatility of an-at-the- money option. The tail index is
in green, while the volatility VXO is blue. The sample period is 1986 to 2010.
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Figure 4: Tail Risk and Volatility: Monthly Data

The figure shows the monthly average of the tail risk estimator of Hill (1975), applied to stock returns.
The tail index is estimated from equation (2) in the cross-section of stocks every day to obtain a daily tail
risk index for the market. This daily index is then averaged each month to obtain a monthly tail index.
The data comprise NYSE, AMEX and NASDAQ stocks with prices between $5 and $1000. Also shown is
the monthly average of the volatility measure VXO, which measures implied volatility of an at-the-money
option. The tail index is in green, while the volatility VXO is blue. The sample period is 1986 to 2010.
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Table 1: Performance of Portfolios based on Return Tail Risk and Liquidity

The table presents the average returns of portfolios sorted on tail risk in returns and liquidity. St. Dev.
denotes the standard deviation. The letters ’RTI’ and ’LIQ’ denote portfolios sorted on sensitivity to the tail
index for returns and the liquidity measure of Amihud (2002), respectively, as in equation (5). For example,
the portfolio ’LIQ2’ corresponds to the returns on firms that are in the second (2) most sensitive quintile
to liquidity risk. Portfolio returns are annualized and in percentages, so that 1 represents 1%). The data
comprise firms with prices between $5 and $1000, and include common stocks listed on NYSE, AMEX and
NASDAQ during the sample period. The time period is 1964 through 2010.

Panel A: Portfolios Sorted on βR,
Sensitivity to Return Tail Index

Mean St. Dev
RTI1 13.48 19.89
RTI2 11.51 16.15
RTI3 11.02 15.07
RTI4 8.94 15.57
RTI5 8.61 20.32
RTI1-RTI5 [4.87] [3.25]

Panel B: Portfolios Sorted on βliq,
Sensitivity to Liquidity
LIQ1 11.68 20.29
LIQ2 12.22 16.06
LIQ3 9.99 14.89
LIQ4 10.99 15.50
LIQ5 10.16 21.07
LIQ1-LIQ5 1.52 [0.95]
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Table 2: Properties of Return Tail Risk Factor, ’TR’

The table presents summary statistics of the tail risk factor, in terms of average returns and correlation with
other factors. t-statistics are in square brackets. The letters ’TR’ (’LIQ’) denote the return tail risk (liquidity)
factor, which is computed as the difference in returns between stocks with highest and lowest sensitivity to
the tail index (liquidity). Our measure of liquidity is that of Amihud (2002). We sort all firms in June each
year according to their respective sensitivity to tail risk, as estimated in equation (5). We then form 5 quintile
portfolios and compute monthly returns over the subsequent year. The return difference between the highest
(5) and lowest (1) sensitivity portfolios represents the tail risk factor TR. All factors are annualized and in
percentage points, so that 1 represents 1%). Data comprise firms with prices between $5 and $1000, and
include firms listed on NYSE, AMEX and NASDAQ during the sample period. The time period is 1964
through 2010.

Panel A: Average Returns
MKT SMB HML LIQ TR

Mean 5.15 3.49 4.61 1.52 4.87
[2.21] [2.14] [3.05] [0.95] [3.25]

Panel B: Correlations
MKT SMB HML LIQ TR

MKT 1 0.3088 -0.3066 -0.0501 -0.0322
SMB 1 -0.2348 -0.0559 0.1309
HML 1 0.1765 0.0023

LIQ 1 0.0671
TR 1
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Figure 5: The Return Tail Risk Factor

The figure shows the tail risk factor TR, which is computed as the difference in returns between stocks
with highest and lowest sensitivity to the daily tail index. We sort all firms in June each year according to
their respective sensitivity to tail risk as described in equation (5). We then form 5 quintile portfolios and
compute monthly returns over the subsequent year. The return difference between the highest (5) and lowest
(1) sensitivity portfolios represents the tail risk factor. The data comprise NYSE, AMEX and NASDAQ
stocks with prices between $5 and $1000. Shaded areas denote NBER recessions. The sample period is
1964 to 2009.
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Figure 6: The Exposure of Financial Firms to Tail Risk

The figure presents the proportion of financial firms and other characteristics of the stocks in our Tail Risk
portfolios. We sort all firms in June each year according to their respective sensitivity to tail risk as in
equation (5). We then form 5 quintile portfolios and compute monthly returns over the subsequent year.
The letters ’TI’ in the bottom bar denote portfolios sorted on sensitivity to the tail index. For example, the
portfolio ’TI2’ corresponds to the returns on firms that are in the second (2) most sensitive quintile to tail
risk. All portfolios are value weighted. Financial firms are those with SIC code 6000. The proportion of
financial firms is in percentage points. Leverage is calculated as the ratio of total debt to total assets. Book-
to-Market and leverage are computed using the value in Compustat, as of December 31 of year t-1, for the
portfolios that are formed in June of year t. Book-to-market and leverage are winsorized at 1% and 99%.
The data comprise NYSE, AMEX and NASDAQ stocks with prices between $5 and $1000. The sample
period is 1964 to 2009.
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Table 3: Characteristics of Portfolios for Return Tail Risk and Liquidity

The table presents characteristics of the firms in our Return Tail Risk and Liquidity portfolios. We sort all
firms in June each year according to their respective sensitivity to return tail risk as in equation (5). We then
form 5 quintile portfolios and compute monthly returns over the subsequent year. The letters ’TI’ and LIQ
denote portfolios sorted on sensitivity to the return tail index and liquidity, respectively. For example, the
portfolio ’TI2’ corresponds to the returns on firms that are in the second (2) most sensitive quintile to tail
risk. Financial firms are those with SIC code 6000. The proportion of financial firms is in percentage points.
Leverage is calculated as the ratio of total debt to total assets. Book-to-Market and leverage are computed
using the value in Compustat, as of December 31 of year t-1, for the portfolios that are formed in June of
year t. Book-to-market and leverage are winsorized at 1% and 99%. Standard deviations are in parentheses.
All portfolios are value weighted. The time period comprises 1964 through 2009.

Panel A: Tail Index Portfolios
TI1 TI2 TI3 TI4 TI5

% Financial Firms 10.06 15.28 17.93 16.32 11.47
(5.09) (7.50) (8.90) (8.45) (5.21)

Leverage 0.5103 0.5242 0.5368 0.5276 0.5126
(0.0370) (0.0407) (0.0516) (0.0485) (0.0301)

Book-to-Market 0.82 0.82 0.81 0.80 0.79
(0.39) (0.32) ( 0.30) (0.30) (0.33)

Panel B: Liquidity Portfolios
LIQ1 LIQ2 LIQ3 LIQ4 LIQ5

% Financial Firms 11.01 15.74 17.48 15.84 11.02
(6.10) (8.14) (9.09) (8.37) (5.27)

Leverage 0.5148 0.5223 0.5334 0.5277 0.5135
(0.0384) (0.0453) (0.0526) (0.0442) (0.0355)

Book-to-Market 0.81 0.82 0.82 0.79 0.78
(0.37) ( 0.31) (0.30) (0.29) ( 0.36)
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Figure 7: Tail Risk for Financial Firms

The figure’s upper panel displays the return tail index, computed for all firms, and for only financial firms.
The tail index is estimated for daily stock data using the method of Hill (1975), from equation (2), using the
cross section of returns each day. Then, we average it across all stocks to obtain a market tail index, reported
in the figure’s upper panel. The lower panel presents the Dow Jones Industrial Average (DJIA), both levels
and returns. The data comprise NYSE, AMEX and NASDAQ stocks with prices between $5 and $1000.
The sample period is 1964 to 2010.
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Table 4: Properties of Return Tail Index for Financial Firms

The table presents summary statistics of the return tail index, computed both for all firms and for financial
firms only. The tail index is estimated from the cross section of daily returns using the method of Hill (1975),
as in equation (2). All tail indices refer to the left tail, unless otherwise specified. The market tail index
is computed in two steps. First we compute the tail index for each stock from the cross section of returns.
Then we average the tail index across all stocks to obtain a market return tail index, reported in the Table.
P-values are presented in parentheses. Min, Max and St. Dev. denote minimum, maximum and standard
deviation, respectively. RTI and RTI(Fin) denote the return tail index for all companies and for financial
companies only, respectively. DJIA is the level of the Dow Jones Industrial Average, and DJIA(Ret) is the
daily return on the Dow Jones Industrial Average. Data comprise firms with prices between $5 and $1000,
and include firms listed on NYSE, AMEX and NASDAQ during the sample period, January 1964 through
December 2010.

Panel A: Summary Statistics
Variable Mean St. Dev. Min Max

RTI 2.6823 0.5281 0.6467 7.01456
RTI(Fin) 2.8553 1.3897 0.6245 51.5082

DJIA 4164 4090 578 14165
DJIA(Ret) 0.0003 0.0103 -0.2261 0.1108

Panel B: Correlations
RTI RTI(Fin) DJIA DJIA(Ret)

RTI 1 0.4002 -0.2352 -0.6000
(< .0001) (< .0001) (< .0001)

RTI(Fin) 1 -0.1385 -0.2061
(< .0001) (< .0001)

DJIA 1 0.0060
(0.5097)

DJIA(Ret) 1
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Table 5: Stationarity and Unit Root Tests

The table presents the unit root test of Phillips and Perron (1988), and the KPSS stationarity test of
Kwiatkowski et al. (1992). St. Dev is the standard deviation. Month-end TI denotes the tail index cal-
culated at the end of the month. Avg. TI denotes the average tail index each month. TR denotes the tail risk
factor. Yield denotes the spread between BAA and AAA bonds, available from the Federal Reserve Bank of
St. Louis. Variables are evaluated at the one month frequency. P-values are in parentheses. The time period
comprises 1964 through 2009.

MKT Yield TR Month-end TI Avg. TI
Mean 0.0900 0.0105 0.0047 -2.5913 -2.6919

St. Dev. 0.1588 0.0014 0.0276 0.4735 0.2420

H0: unit root -20.50 -1.07 -20.21 -2.84 -0.86
( 0.001) (0.259) (0.001) (0.005) (0.338)

H0: stationarity 0.12 3.50 0.15 0.27 1.64
(0.100) (0.010) (0.048) (0.010) (0.010)
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Table 6: Causality Tests

The table presents causality tests based on the approach of Granger (1969). The framework is a 2-variable
vector autoregression (VAR). The null hypothesis is that all coefficients are zero, which is assessed by an
F-test. The symbols TR and MKT denote the tail risk factor and market return, respectively. Yield denotes
the spread between BAA and AAA bonds, available from the Federal Reserve Bank of St. Louis. The tail
index is evaluated at the month’s end. AIC and BIC are the Akaike and Bayesian information criteria. All
dependent variables are annualized. The symbols ***, **, and * denote p-values smaller than 0.01, 0.05,
and 0.10, respectively. The time period comprises 1964 through 2009.

Panel A: Choice of Optimal Lag in Bivariate Vector Autoregression
Model 1 Model 2 Model 3 Model 4

TR vs Yield TR vs MKT Tail Index vs Yield Tail Index vs MKT
Lags AIC BIC AIC BIC AIC BIC AIC BIC

1 -6075.59 -6049.90 -7129.25 -7103.57 -3051.74 -3026.06 -4101.41 -4075.73
2 -6126.04 -6083.23 -7123.85 -7081.05 -3111.37 -3068.56 -4111.34 -4068.54
3 -6142.19 -6082.27 -7120.08 -7060.15 -3117.88 -3057.95 -4108.20 -4048.28
4 -6137.17 -6060.12 -7112.71 -7035.66 -3117.13 -3040.08 -4106.25 -4029.20
5 -6142.05 -6047.88 -7114.19 -7020.02 -3123.22 -3029.05 -4116.80 -4022.63
6 -6157.90 -6046.61 -7110.22 -6998.92 -3134.50 -3023.21 -4116.80 -4005.51
7 -6153.01 -6024.59 -7103.13 -6974.72 -3130.73 -3002.32 -4110.59 -3982.18
8 -6154.61 -6009.08 -7098.34 -6952.81 -3135.31 -2989.78 -4106.94 -3961.41
9 -6150.43 -5987.78 -7092.98 -6930.33 -3134.19 -2971.54 -4101.88 -3939.22
10 -6146.08 -5966.30 -7089.22 -6909.44 -3135.35 -2955.58 -4102.89 -3923.11
11 -6149.27 -5952.38 -7088.50 -6891.61 -3133.68 -2936.78 -4102.03 -3905.13
12 -6145.03 -5931.01 -7082.72 -6868.70 -3137.82 -2923.80 -4103.86 -3889.84

Panel B: F-statistic from Granger Causality test (lag determined by BIC)
Model 1: TR vs Yield Model 2: TR vs MKT Model 3: Tail Index vs Yield Model 4: Tail Index vs MKT

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
TR Yield TR MKT Tail Index Yield Tail Index MKT

Variable 1 4.40** 5.73*** 6.34** 0.20 7.66*** 1.95 3.01* 3.35*
Variable 2 1.65 4110.61*** 4.20** 4.61** 1.46 3973.72*** 3.34* 5.18**

Panel C: F-statistic from Granger Causality test (lag determined by AIC)
Model 1: TR vs Yield Model 2: TR vs MKT Model 3: Tail Index vs Yield Model 4: Tail Index vs MKT

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
TR Yield TR MKT Tail Index Yield Tail Index MKT

Variable 1 2.16** 6.15*** 6.34** 0.20 4.86*** 0.72 6.47*** 1.35
Variable 2 2.36** 1339.12*** 4.20** 4.61** 1.50 692.76*** 2.25** 1.90*
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Table 7: Predictability Tests

The table presents tests of predictability for the market return (MKT) and yield spread (Yield), using the tail
index and tail risk factor TR. In Panel A, the regression tests are of the form MKTt = α+βTR ·TRt−1+εt
and Y ieldt = α+βTR ·TRt−1+εt. Panel B presents the same estimation except that the tail index replaces
TR on the right hand side, and the coefficient is now βTI . All dependent variables are annualized so that
coefficients can be compared directly. Yield denotes the spread between BAA and AAA bonds, available
from the Federal Reserve Bank of St. Louis. The tail index is evaluated at the month’s end. We consider
horizons of 1 month, 1 year, 3 years, and 5 years. Standard errors are in square brackets, and computed
using the method of Hodrick (1992). The time period comprises 1964 through 2009.

Panel A: Predictability using Tail Risk Factor TR
Dependent Variable: MKTt Dependent Variable: Y ieldt

1 Month 1 Year 3 Year 5 Year 1 Month 1 Year 3 Year 5 Year
α 0.0904 0.0900 0.0937 0.0954 0.0104 0.0104 0.0104 0.0105

[0.0236] [0.0238] [0.0242] [0.0244] [0.0002] [0.0002] [0.0002] [0.0002]

βTR -0.0893 -0.7188 0.0486 0.1002 0.0113 0.0271 0.0079 0.0064
[1.0322] [0.2974] [0.1109] [0.0892] [0.0085] [0.0025] [0.0009] [0.0007]

Panel B: Predictability Using Market Tail Index
Dependent Variable: MKTt Dependent Variable: Y ieldt

1 Month 1 Year 3 Years 5 Years 1 Month 1 Year 3 Years 5 Years
α -0.1286 0.0943 0.1267 0.1292 0.0142 0.0123 0.0109 0.0105

[0.1395] [0.0558] [0.0543] [0.0501] [0.0013] [0.0004] [0.0005] [0.0005]

βTI -0.0820 0.0029 0.0123 0.0125 0.0014 0.0007 0.0002 0.0000
[0.0528] [0.0200] [0.0189] [0.0181] [0.0005] [0.0001] [0.0002] [0.0002]
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Table 8: The Price of Exposure to Tail Risk

The table presents the estimated risk premia, which measure the return per unit of exposure to each risk
factor. More details are in the Appendix. The letters ’TR’ (’LIQ’) denote the return tail risk (liquidity)
factor, which is computed as the difference in returns between stocks with highest and lowest sensitivity to
the tail index (liquidity). We sort all firms in June each year according to their respective sensitivity to tail
risk as in equation (5). We then form 5 quintile portfolios and compute monthly returns over the subsequent
year. The return difference between the highest (RTI5) and lowest (RTI1) sensitivity portfolios represents
the tail risk factor. FF3 denotes the Fama-French 3-factor model. The test statistics are the 5x5 book to
market portfolios, available from the website of Kenneth French. Estimation is performed by GMM of
Hansen (1982). Robust t-statistics are in square brackets. The data comprise common stocks on NASDAQ,
NYSE and AMEX with at least 120 trading days in the relevant year. The time period is years 1964 through
2009.

Model: CAPM CAPM CAPM CAPM FF3 FF3
& LIQ & TR & LIQ, TR & LIQ, TR

Estimated Risk Premia
MKT 0.0037 0.0030 0.0058 0.0063 0.0046 0.0060

[1.89] [1.57] [2.38] [2.46] [2.14] [2.10]
SMB 0.0014 0.0041

[1.00] [ 2.00]
HML 0.0046 0.0043

[3.29] [1.96]
LIQ 0.0015 -0.0029 0.0047

[0.4156] [-0.56] [-0.78]
TR 0.0190 0.0213 0.0234

[3.64] [3.67] [3.54]
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Table 9: Asset Pricing Tests

The table presents the results of asset pricing tests on our sample. Estimation is performed using GMM.
Robust t-statistics are in square brackets, and p-values are in parentheses. The J-test is the over-identifying
restriction test of Hansen (1982). HJ-distance refers to the distance metric of Hansen and Jagannathan
(1997). Large p-values for the J-statistic and HJ distance indicate that the particular model fits well. The
delta-J test of Newey and West (1987) assesses whether the inclusion of HML and SMB improves model
fit. A small p-value for the delta-J test indicates that additional factors improve model fit. The letters ’TR’
(’LIQ’) denote the return tail risk (liquidity) factor, which is computed as the difference in returns between
stocks with highest and lowest sensitivity to the tail index (liquidity). We sort all firms in June each year
according to their respective sensitivity to tail risk as in equation (5). We then form 5 quintile portfolios
and compute monthly returns over the subsequent year. The return difference between the highest (RTI5)
and lowest (RTI1) sensitivity portfolios represents the tail risk factor. All portfolios are value weighted.
FF3 denotes the Fama-French 3-factor model. The data comprise common stocks on NASDAQ, NYSE and
AMEX with at least 120 trading days in the relevant year. The time period is 1964 through 2009.

Model: CAPM CAPM CAPM CAPM FF3 FF3
& LIQ & TR & LIQ, TR & LIQ, TR

J-Statistic 46.45 46.89 31.78 29.53 36.82 20.13
(0.00) (0.00) ( 0.08) ( 0.10) (0.02) (0.39)

HJ Distance 0.36 0.36 0.31 0.31 0.31 0.25
(0.00) ( 0.00) (0.07) (0.05) (0.00) (0.41)

Delta-J 9.63 13.27 9.58 9.39
(0.01) (0.00) (0.01) (0.01)
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Table 10: Robustness to Value-Weighted Liquidity

The table presents estimated premia and results of asset pricing tests on our sample, where we calculate
liquidity portfolios that are value-weighted. Estimation is performed using GMM. Robust t-statistics are in
square brackets, and p-values are in parentheses. The J-test is the over-identifying restriction test of Hansen
(1982). HJ-distance refers to the distance metric of Hansen and Jagannathan (1997). Large p-values for the
J-statistic and HJ distance indicate that the particular model fits well. The delta-J test of Newey and West
(1987) assesses whether the inclusion of HML and SMB improves model fit. A small p-value for the delta-J
test indicates that additional factors improve model fit. The letters ’TR’ (’VWLIQ’) denote the return tail
risk (liquidity) factor, which is computed as the difference in returns between stocks with highest and lowest
sensitivity to the tail index (liquidity). We sort all firms in June each year according to their respective
sensitivity to tail risk as in equation (5). We then form 5 quintile portfolios and compute monthly returns
over the subsequent year. The return difference between the highest (RTI5) and lowest (RTI1) sensitivity
portfolios represents the tail risk factor. All portfolios are value weighted. FF3 denotes the Fama-French 3-
factor model. The data comprise common stocks on NASDAQ, NYSE and AMEX with at least 120 trading
days in the relevant year.The time period is 1964 through 2009.

Model: CAPM CAPM CAPM CAPM FF3 FF3
& VWLIQ & TR & VWLIQ, TR & VWLIQ, TR

Panel A: Estimated Risk Premia
MKT 0.0035 0.0040 0.0055 0.0057 0.0044 0.0051

[1.78] [1.99] [2.29] [2.33] [2.03] [1.57]
SMB 0.0013 0.0030

[0.89] [ 1.51]
HML 0.0047 0.0062

[3.33] [2.79]
VWLIQ -0.0019 -0.0015 0.0048

[-0.50] [-0.34] [0.88]
TR 0.0133 0.0133 0.0236

[2.78] [2.76] [3.16]

Panel B: Asset Pricing Tests
J-Statistic 45.96 44.55 35.69 35.54 36.37 18.35

(0.00) (0.00) ( 0.03) ( 0.02) (0.02) (0.50)
HJ Distance 0.36 0.36 0.32 0.31 0.31 0.25

(0.00) (0.00) (0.11) (0.13) (0.00) (0.52)
Delta-J 9.59 8.10 14.29 17.18

(0.01) (0.02) (0.00) (0.00)

46



Table 11: Robustness to Liquidity and Momentum

The table presents estimated premia and results of asset pricing tests on our sample, where we account
for an alternative liquidity factor and momentum effects. Estimation is performed using GMM. Robust t-
statistics are in square brackets, and p-values are in parentheses. The J-test is the over-identifying restriction
test of Hansen (1982). HJ-distance refers to the distance metric of Hansen and Jagannathan (1997). Large
p-values for the J-statistic and HJ distance indicate that the particular model fits well. The delta-J test of
Newey and West (1987) assesses whether the inclusion of HML and SMB improves model fit. A small
p-value for the delta-J test indicates that additional factors improve model fit. The letters ’TR’ denote the
return tail risk factor, which is computed as the difference in returns between stocks with highest and lowest
sensitivity to the tail index. We sort all firms in June each year according to their respective sensitivity to tail
risk as in equation (5). We then form 5 quintile portfolios and compute monthly returns over the subsequent
year. The return difference between the highest (RTI5) and lowest (RTI1) sensitivity portfolios represents
the tail risk factor. All portfolios are value weighted. FF3 denotes the Fama-French 3-factor model. PSLIQ
is the liquidity factor of Pastor and Stambaugh (2003), and MOM is the momentum factor of Carhart (1997).
The data comprise common stocks on NASDAQ, NYSE and AMEX with at least 120 trading days in the
relevant year. The time period is 1964 through 2009.

Model: CAPM CAPM & PSLIQ FF3 FF3 & PSLIQ
& PSLIQ, MOM & MOM, TR & MOM, TR

Panel A: Estimated Risk Premia
MKT 0.0059 0.0053 0.0047 0.0049

[2.05] [1.80] [2.03] [1.59]
SMB 0.0010 0.0015

[0.68] [ 0.71]
HML 0.0046 0.0048

[3.18] [2.54]
PSLIQ 0.0278 0.0253 0.0122

[3.24] [[2.90]] [1.41]
MOM 0.0043 0.0041 0.0129

[0.57] [0.48] [1.49]
TR 0.0118 0.0132

[2.29] [2.33]
Panel B: Asset Pricing Tests
J-Statistic 24.93 19.45 32.79 18.71

(0.25) (0.49) (0.05) (0.41)
HJ Distance 0.34 0.30 0.31 0.22

(0.03) (0.20) (0.01) (0.64)
Delta-J 4.59 0.74

(0.10) (0.69)
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Table 12: Robustness to Downside Risk

The table presents estimated premia and results of asset pricing tests on our sample, where we account for
downside risk. As in Ang et al. (2006a) equation (13), we consider both a market factor and a ’downside’
factor that equals the minimum of the current market return and its historical average. That is, we estimate
linear factor models of the form reit = β0+βMMKTt+βDMKT−

t +βSSMBt+βHHMLt+βLLIQt+
βTTRt + εit where MKT−

t is the minimum of the market return and its historical average computed up
to period t. Further, rei and MKT represent excess returns on individual stocks and the market portfolio,
SMB and HML are the Fama-French factors, and Illiq and TI are the Amihud liquidity measure and
tail index of cross-sectional daily returns described above.Estimation is performed using GMM. Robust t-
statistics are in square brackets, and p-values are in parentheses. The J-test is the over-identifying restriction
test of Hansen (1982). HJ-distance refers to the distance metric of Hansen and Jagannathan (1997). Large
p-values for the J-statistic and HJ distance indicate that the particular model fits well. The delta-J test of
Newey and West (1987) assesses whether the inclusion of HML and SMB improves model fit. A small
p-value for the delta-J test indicates that additional factors improve model fit. The tail risk factor is the
return difference between a high risk portfolio and low risk portfolio. We sort all firms in June each year
according to their respective sensitivity to tail risk as in equation (5). We then form 5 quintile portfolios
and compute monthly returns over the subsequent year. The return difference between the highest (RTI5)
and lowest (RTI1) sensitivity portfolios represents the tail risk factor. All portfolios are value weighted. The
time period comprises 1964 through 2009.

Model: CAPM CAPM & LIQ FF3 FF3 &LIQ
&Down &TR, Down &Down & TR, Down

Panel A: Estimated Risk Premia
MKT 0.0030 0.0045 0.0045 0.0032

[ 1.30] [ 1.71] [2.23] [0.98]
SMB 0.0014 0.0022

[ 0.97] [1.06]
HML 0.0046 0.0053

[3.31] [2.43]
LIQ 0.0030 0.0030

[0.70] [ 0.56]
TR 0.0148 0.0232

[3.12] [3.35]
Down 0.0032 0.0029 0.0018 0.0028

[1.15] [0.88] [0.61] [0.66]

Panel B: Asset Pricing Tests
J-Statistic 44.74 32.30 36.29 18.99

(0.00) (0.04) (0.01) ( 0.39)
HJ Distance 0.36 0.31 0.30 0.25

(0.00) (0.06) ( 0.00) (0.52)
Delta-J 8.45 13.30

(0.01) (0.00)
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Table 13: Return Properties of Tail Risk Factor TR and Volatility factor FVIX

The table presents summary statistics of TR and the FVIX volatility risk factor of Ang et al. (2006b), in
terms of average returns and correlation with other factors. Standard deviations are denoted St. Dev. The
letters ’TR’ (’LIQ’) denote the return tail risk (liquidity) factor, which is computed as the difference in
returns between stocks with highest and lowest sensitivity to the tail index (liquidity). We sort all firms
in June each year according to their respective sensitivity to tail risk as in equation (5). We then form 5
quintile portfolios and compute monthly returns over the subsequent year. The return difference between
the highest (RTI5) and lowest (RTI1) sensitivity portfolios represents the tail risk factor. Data comprise
firms with prices between $5 and $1000, and include firms listed on NYSE, AMEX and NASDAQ during
the sample period. The time period is February 1986 to December 2009.

Panel A: Average Returns
MKT SMB HML LIQ TR FVIX

Mean 6.32 0.93 3.64 1.40 6.05 0.54
St. Dev 16.07 11.72 11.08 12.17 11.05 2.13

Panel B: Correlations
MKT SMB HML LIQ TR FVIX

MKT 1 0.2101 -0.3136 -0.0790 -0.1046 -0.6630
SMB 1 -0.3483 -0.1470 0.0978 -0.1376
HML 1 0.2935 -0.0022 0.1988

LIQ 1 0.2883 0.0014
TR 1 0.0416

FVIX 1
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Table 14: Robustness to Volatility Risk

The table presents estimated premia and results of asset pricing tests on our sample, where we account for the
volatility factor FVIX of Ang et al. (2006b). Estimation is performed using GMM. Robust t-statistics are in
square brackets, and p-values are in parentheses. The J-test is the over-identifying restriction test of Hansen
(1982). HJ-distance refers to the distance metric of Hansen and Jagannathan (1997). Large p-values for the
J-statistic and HJ distance indicate that the particular model fits well. The delta-J test of Newey and West
(1987) assesses whether the inclusion of HML and SMB improves model fit. A small p-value for the delta-J
test indicates that additional factors improve model fit. The tail risk factor is the return difference between
a high risk portfolio and low risk portfolio. We sort all firms in June each year according to their respective
sensitivity to tail risk as in equation (5). We then form 5 quintile portfolios and compute monthly returns
over the subsequent year. The return difference between the highest (RTI5) and lowest (RTI1) sensitivity
portfolios represents the tail risk factor. All portfolios are value weighted. The time period comprises 1986
through 2009.

Model: CAPM CAPM &LIQ FF3 FF3 & LIQ
& FVIX & TR, FVIX & FVIX & TR, FVIX

Panel A: Estimated Risk Premia
MKT 0.0017 0.0099 0.0018 0.0092

[0.43] [1.59] [0.31] [1.24]
SMB -0.0073 0.0007

[-2.89] [0.23]
HML 0.0081 0.0032

[4.49] [1.02]
LIQ 0.0023 0.0030

[0.47] [0.53]
TR 0.0205 0.0266

[3.78] [3.93]
FVIX -0.0012 -0.0028 -0.0029 -0.0032

[-0.95] [ -1.46] [-1.35] [-1.46]

Panel B: Asset Pricing Tests
J-Statistic 35.35 25.66 28.36 14.42

( 0.04) ( 0.18) (0.10) ( 0.70)
HJ Distance 0.46 0.39 0.44 0.33

(0.00) (0.16) (0.00) (0.57)
Delta-J 6.99 11.24

(0.03) (0.00)
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Table 15: Robustness to Price Filter

The table presents estimated premia and results of asset pricing tests on our sample, where we filter the
data to include only stocks with prices in the range $5 - $1000 in the previous year. Estimation is per-
formed using GMM. Robust t-statistics are in square brackets, and p-values are in parentheses. The J-
test is the over-identifying restriction test of Hansen (1982). HJ-distance refers to the distance metric of
Hansen and Jagannathan (1997). Large p-values for the J-statistic and HJ distance indicate that the particu-
lar model fits well. The delta-J test of Newey and West (1987) assesses whether the inclusion of HML and
SMB improves model fit. A small p-value for the delta-J test indicates that additional factors improve model
fit. The tail risk factor is the return difference between a high risk portfolio and low risk portfolio. We sort all
firms in June each year according to their respective sensitivity to tail risk, as in equation (5). We then form
5 quintile portfolios and compute monthly returns over the subsequent year. The return difference between
the highest (RTI5) and lowest (RTI1) sensitivity portfolios represents the tail risk factor. All portfolios are
value weighted. The time period comprises 1964 through 2009.

Model: CAPM CAPM CAPM CAPM FF3 FF3
&LIQ & TR & LIQ, TR & LIQ, TR

Panel A: Estimated Risk Premia
MKT 0.0035 0.0025 0.0050 0.0046 0.0044 0.0046

[1.78] [1.24] [1.90] [1.71] [2.03] [1.56]
SMB 0.0013 0.0022

[0.89] [1.23]
HML 0.0047 0.0049

[3.33] [2.33]
LIQ 0.0042 0.0064 0.0060

[ 1.08] [1.24] [1.04]
TR 0.0171 0.0173 0.0193

[2.77] [2.79] [2.78]

Panel B: Asset Pricing Tests
J-Statistic 45.96 45.39 30.69 30.46 36.37 22.63

(0.00) (0.00) (0.10) ( 0.08) (0.02) (0.25)
HJ Distance 0.36 0.36 0.32 0.32 0.31 0.27

(0.00) (0.00) ( 0.07) ( 0.05) (0.00) (0.25)
Delta-J 9.59 9.34 7.94 7.83

(0.01) (0.01) (0.02) (0.02)
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Figure 8: Comparison of Tail Index for Returns and Liquidity

The figure shows the tail index estimated from the daily cross section of firm liquidity and returns. The
estimation is performed using the method of Hill (1975), as in equation (2). The liquidity measure is that
of Amihud (2002). The return tail index is in green, the liquidity tail index is in blue. The data comprise
NYSE, AMEX and NASDAQ stocks from CRSP, with prices between $5 and $1000. The sample period is
1964 to 2010.
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Table 16: Performance of Liquidity Tail Risk Portfolios

The table presents the average returns of portfolios sorted on liquidity tail risk and liquidity levels. Standard
deviations are in the column headed ’St. Dev’, and t-statistics for significance of the high-low differentials
are in square brackets. The letters ’LTI’ and LIQ denote portfolios sorted on sensitivity to the liquidity tail
index and liquidity measure of Amihud (2002), respectively, as in equation (6). For example, the portfolio
’LTI2’ corresponds to the returns on firms that are in the second (2) most sensitive quintile to liquidity tail
risk. Returns are annualized and in percentages, so that 1 represents 1%). The data comprise firms with
prices between $5 and $1000, and include common stocks listed on NYSE, AMEX and NASDAQ during
the sample period. The time period is 1964 through 2010.

Panel A: Portfolios sorted on βL,
Sensitivity to Liquidity Tail Index

Mean St. Dev
LTI1 11.17 20.44
LTI2 11.00 16.07
LTI3 10.70 14.99
LTI4 11.05 15.64
LTI5 10.44 19.51

LTI1-LTI5 0.72
t-value [0.52]

Panel B: Portfolios sorted on βliq,
Sensitivity to Liquidity Level

LIQ1 11.69 20.17
LIQ2 12.02 16.19
LIQ3 10.19 14.79
LIQ4 10.66 15.68
LIQ5 10.67 20.11

LIQ1-LIQ5 1.02
t-value [0.68]
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Table 17: Properties of Liquidity Tail Risk Factor, ’LTR’

The table presents summary statistics of the liquidity tail risk factor, in terms of average returns and correla-
tion with other factors. t-statistics are in square brackets. The letters ’LTR’ (’LIQ’) denote the liquidity tail
risk (liquidity level) factor, which is computed as the difference in returns between stocks with highest and
lowest sensitivity to the tail index (liquidity). Our measure of liquidity is that of Amihud (2002). We sort all
firms in June each year according to their respective sensitivity to liquidity tail risk, as estimated in equation
(6). We then form 5 quintile portfolios and compute monthly returns over the subsequent year. The return
difference between the highest (LTI5) and lowest (LTI1) sensitivity portfolios represents the tail risk factor
LTR. All factors are annualized and in percentage points, so that 1 represents 1%). Data comprise firms with
prices between $5 and $1000, and include firms listed on NYSE, AMEX and NASDAQ during the sample
period. The time period is 1964 through 2010.

Panel A: Average Returns
MKT SMB HML LIQ LTR

Mean 5.15 3.49 4.61 1.02 0.72
[2.21] [2.14] [3.05] [0.68] [0.52]

Panel B: Correlations
MKT SMB HML LIQ LTR

MKT 1 0.3088 -0.3066 0.0190 0.0958
SMB 1 -0.2348 -0.0287 0.1080
HML 1 0.1634 -0.0567

LIQ 1 0.1410
LTR 1
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Table 18: Asset Pricing Tests for Liquidity Tail Risk ”LTR”

The table presents estimated premia and results of asset pricing tests on our sample. Panel A displays risk
premia, which measure the return per unit of exposure to each risk factor. More details are in the Appendix.
The letters ’LTR’ (’LIQ’) denote the liquidity tail risk (liquidity level) factor, which is computed as the
difference in returns between stocks with highest and lowest sensitivity to the liquidity tail index (liquidity
level). Estimation is performed using GMM. Robust t-statistics are in square brackets. Panel B displays
results from three asset pricing tests. The J-test is the over-identifying restriction test of Hansen (1982). HJ-
distance refers to the distance metric of Hansen and Jagannathan (1997). Large p-values for the J-statistic
and HJ distance indicate that the particular model fits well. The delta-J test of Newey and West (1987)
assesses whether the inclusion of HML and SMB improves model fit. Robust p-values are in parentheses.
A small p-value for the delta-J test indicates that additional factors improve model fit. We sort all firms in
June each year according to their respective sensitivity to tail risk as in equation (6). We then form 5 quintile
portfolios and compute monthly returns over the subsequent year. The return difference between the highest
(LTI5) and lowest (LTI1) sensitivity portfolios represents the liquidity tail risk factor LTR. All portfolios
are value weighted. FF3 denotes the Fama-French 3-factor model. The data comprise common stocks on
NASDAQ, NYSE and AMEX with at least 120 trading days in the relevant year. The time period is 1964
through 2010.

Model: CAPM CAPM CAPM CAPM FF3 FF3
& LIQ & LTR & LIQ, LTR & LIQ, LTR

Panel A: Estimated Risk Premia
MKT 0.0037 0.0027 0.0043 0.0035 0.0046 0.0062

[1.89] [1.41] [2.13] [1.75] [2.14] [2.73]
SMB 0.0014 0.0017

[1.00] [1.18]
HML 0.0046 0.0040

[3.29] [2.68]
LIQ 0.0028 0.0029 -0.0024

[0.81] [0.83] [-0.58]
LTR 0.0044 0.0041 0.0048

[1.44] [1.32] [1.54]

Panel B: Asset Pricing Tests
J-Statistic 46.45 47.19 44.59 45.46 36.82 31.12

(0.00) (0.00) ( 0.00) (0.00) (0.02) (0.04)
HJ Distance 0.36 0.36 0.35 0.35 0.31 0.30

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Delta-J 9.63 11.99 10.67 14.34

( 0.01) (0.00) (0.00) (0.00)
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Figure 9: High Frequency-based Tail Index in Returns

The figure displays the tail index in firm returns, based on intraday data. The computation comprises two
steps. First, each day we compute minute-by-minute returns for stocks on NYSE-TAQ, then estimate the
tail index for each stock, based on the 5% extreme returns. The estimation is performed using the method
of Hill (1975), as in equation (2). Second, we average all firm tail indices to obtain an aggregate market tail
index, reported in the figure. The data comprise NYSE, AMEX and NASDAQ stocks with prices between
$5 and $1000. The sample period is January 1993 to December 2010.
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Figure 10: High Frequency-based Tail Index in Liquidity

The figure displays liquidity tail indices computed from intraday data. The intraday-based liquidity tail index
is computed in two steps. First we compute the tail index for each stock from minute-by-minute liquidity
(effective spread, absolute spread, and relative spread), using NYSE-TAQ stocks. Second, we average the
tail index across all stocks to obtain a market liquidity tail index, reported in the figure. The data comprise
NYSE, AMEX and NASDAQ stocks with prices between $5 and $1000. The sample period is 1993 to 2010.
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Figure 11: High Frequency-based Tail Index in Returns: 2001-2010

The figure displays the tail index in firm returns, based on intraday data. The computation comprises two
steps. First, each day we compute minute-by-minute returns for stocks on NYSE-TAQ, then estimate the
tail index for each stock, based on the 5% extreme returns. The estimation is performed using the method
of Hill (1975), as in equation (2). Second, we average all firm tail indices to obtain an aggregate market tail
index, reported in the figure. The data comprise NYSE, AMEX and NASDAQ stocks with prices between
$5 and $1000. The sample period is January 2001 to December 2010.
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Figure 12: High Frequency-based Tail Index in Liquidity: 2001-2010

The figure displays liquidity tail indices computed from intraday data. The intraday-based liquidity tail index
is computed in two steps. First we compute the tail index for each stock from minute-by-minute liquidity
(effective spread, absolute spread, and relative spread), using NYSE-TAQ stocks. Second, we average the
tail index across all stocks to obtain a market liquidity tail index, reported in the figure. The data comprise
NYSE, AMEX and NASDAQ stocks with prices between $5 and $1000. The sample period is 2001 to 2010.
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Figure 13: Liquidity Tail Index from Daily and Intraday Data

The figure shows liquidity tail indices computed from both daily and intraday data. Both measures are
estimated using the method of Hill (1975), from equation (2). The daily-based tail index is computed using
the cross section of Amihud (2002) liquidity each day. The intraday-based liquidity tail index is computed in
two steps. First we compute the tail index for each stock from minute-by-minute liquidity (net order flow),
using NYSE-TAQ stocks. Second, we average the tail index across all stocks to obtain a market liquidity tail
index, reported in the figure. The data comprise NYSE, AMEX and NASDAQ stocks with prices between
$5 and $1000. The sample period is 1993 to 2010.
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Table 19: Properties of Intraday Tail Index for Returns and Liquidity

The table presents correlations of the tail index, computed for both intraday returns and intraday liquidity.
Liquidity is measured in 4 different ways: net order flow, effective spread, absolute spread, and relative
spread. The tail index is estimated in all cases using the method of Hill (1975), as in equation (2). All
tail indices refer to the left tail, unless otherwise specified. The intraday-based return (liquidity) tail index
is computed in two steps. First we compute the tail index for each stock from minute-by-minute returns
(liquidity measures), using NYSE-TAQ stocks. Second, we average the tail index across all stocks to obtain
a market return (liquidity) tail index, reported in the figure. Data comprise TAQ firms with prices between
$5 and $1000, and include firms listed on NYSE, AMEX and NASDAQ during the sample period, January
1993 through December 2010. P-values are presented in parentheses.

Panel A: Pearson Correlation Coefficients
Net Order Flow Net Order Effective Absolute Relative Return

(Left Tail) Flow Spread Spread Spread (Left Tail)
Net Order Flow 1 0.7626 -0.3045 -0.2925 0.0080 -0.3326

(Left Tail) (< .0001) (< .0001) (< .0001) (0.5938) (< .0001)
Net Order Flow 1 -0.4139 -0.3733 0.0255 -0.4243

(< .0001) (< .0001) (0.0876) (< .0001)
Effective Spread 1 0.6478 0.0177 0.7896

(< .0001) (0.2366) (< .0001)
Absolute Spread 1 -0.0041 0.7562

(0.7816) (< .0001)
Relative Spread 1 0.0553

(0.0002)

Panel B: Spearman Correlation Coefficients
Net Order Flow Net Order Effective Absolute Relative Return

(Left Tail) Flow Spread Spread Spread (Left Tail)
Net Order Flow 1 0.7528 -0.2451 -0.2227 -0.2507 -0.1477

(Left Tail) (< .0001) (< .0001) (< .0001) (< .0001) (< .0001)
Net Order Flow 1 -0.2706 -0.2476 -0.2738 -0.1823

(< .0001) (< .0001) (< .0001) (< .0001)
Effective Spread 1 0.9703 0.9778 0.8308

(< .0001) (< .0001) (< .0001)
Absolute Spread 1 0.9798 0.8270

(< .0001) (< .0001)
Relative Spread 1 0.8277

(< .0001)
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